Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
The Korean Journal of Parasitology ; : 197-201, 2013.
Article in English | WPRIM | ID: wpr-103954

ABSTRACT

A total of 16 Taenia multiceps isolates collected from naturally infected sheep or goats in Gansu Province, China were characterized by sequences of mitochondrial cytochrome c oxidase subunit 1 (cox1) gene. The complete cox1 gene was amplified for individual T. multiceps isolates by PCR, ligated to pMD18T vector, and sequenced. Sequence analysis indicated that out of 16 T. multiceps isolates 10 unique cox1 gene sequences of 1,623 bp were obtained with sequence variation of 0.12-0.68%. The results showed that the cox1 gene sequences were highly conserved among the examined T. multiceps isolates. However, they were quite different from those of the other Taenia species. Phylogenetic analysis based on complete cox1 gene sequences revealed that T. multiceps isolates were composed of 3 genotypes and distinguished from the other Taenia species.


Subject(s)
Animals , China , Cluster Analysis , Cysticercosis/parasitology , DNA, Helminth/chemistry , DNA, Mitochondrial/chemistry , Electron Transport Complex IV/genetics , Genetic Variation , Goat Diseases/parasitology , Goats , Phylogeny , Polymerase Chain Reaction , Protein Subunits/genetics , Sequence Analysis, DNA , Sheep , Sheep Diseases/parasitology , Taenia/classification
2.
The Korean Journal of Parasitology ; : 677-681, 2013.
Article in English | WPRIM | ID: wpr-197173

ABSTRACT

Paragonimiasis is an important food-borne parasitic zoonosis caused by infection with lung flukes of the genus Paragonimus. Of the 7 members of the genus known in Thailand until recently, only P. heterotremus has been confirmed as causing human disease. An 8th species, P. pseudoheterotremus, has recently been proposed from Thailand, and has been found in humans. Molecular data place this species as a sister species to P. heterotremus, and it is likely that P. pseudoheterotremus is not specifically distinct from P. heterotremus. In this study, we collected metacercariae of both nominal species (identification based on metacercarial morphology) from freshwater crabs from Phetchabun Province in northern Thailand, Saraburi Province in central Thailand, and Surat Thani Province in southern Thailand. In addition, we purchased freshwater crabs imported from Myanmar at Myawaddy Province, western Thailand, close to the Myanmar-Thailand border. The DNAs extracted from excysted metacercariae were PCR-amplified and sequenced for ITS2 and cox1 genes. The ITS2 sequences were nearly identical among all samples (99-100%). Phylogenies inferred from all available partial cox1 sequences contained several clusters. Sequences from Indian P. heterotremus formed a sister group to sequences from P. pseudoheterotremus-type metacercariae. Sequences of P. heterotremus from Thailand, Vietnam, and China formed a separate distinct clade. One metacercaria from Phitsanulok Province was distinct from all others. There is clearly considerable genetic variation in the P. heterotremus complex in Thailand and the form referred to as P. pseudoheterotremus is widely distributed in Thailand and the Thai-Myanmar border region.


Subject(s)
Animals , Cluster Analysis , DNA, Ribosomal Spacer/chemistry , Electron Transport Complex IV/genetics , Genetic Variation , Metacercariae/genetics , Molecular Sequence Data , Myanmar , Paragonimus/classification , Phylogeny , Polymerase Chain Reaction , Sequence Analysis, DNA , Sequence Homology , Shellfish/parasitology , Thailand
SELECTION OF CITATIONS
SEARCH DETAIL